Bidding and Investment in Wholesale Electricity Markets

Pay-as-Bid versus Uniform-Price Auctions

Bert Willems1,2 Yueting Yu1

16 December 2021 - AIEE Symposium

1Tilburg University
2Toulouse School of Economics
Wholesale Electricity Markets

- Electricity is a non-storable commodity → supply must meet demand at all times.
- Two ways to organize wholesale market:

 (a) A uniform-price auction (UPA).

 (b) A pay-as-bid auction (PABA).

- Which method is better?
This Paper

• We compare those two multi-unit auction formats.
• In the **short term**: bidding behaviors and price-cost mark-ups.
• In the **long term**: investment and generation portfolio. ← novel
• Construction of perfect competition model with
 - uncertain and elastic demand,
 - a continuum of generation technologies (from base-load to peak-load).
We are not the first to compare PABA and UPA:

<table>
<thead>
<tr>
<th>Model</th>
<th>Investment</th>
<th>CS</th>
<th>Welfare</th>
</tr>
</thead>
<tbody>
<tr>
<td>Federico & Rahman ’03</td>
<td>perf.comp/monop.</td>
<td>no</td>
<td>+</td>
</tr>
<tr>
<td>Holmberg ’09</td>
<td>SFE</td>
<td>no</td>
<td>+</td>
</tr>
<tr>
<td>Fabra et al. ’06</td>
<td>duopoly-step</td>
<td>no</td>
<td>+</td>
</tr>
<tr>
<td>Fabra et al. ’11</td>
<td>duopoly-step</td>
<td>1 tech</td>
<td>+</td>
</tr>
<tr>
<td>Our paper</td>
<td>perf. comp.</td>
<td>∞ tech</td>
<td>–</td>
</tr>
</tbody>
</table>

- **Short-term**: in equilibrium firms submit bids $> MC$. Hence, WTP $> MC$.
 \rightarrow distorts consumption decision

- **Long-term**: revenue of base-load producers is depressed during high demand
 \rightarrow distorts generation mix.
1. Model

2. Analysis
 I. Bidding Equilibrium
 II. Investment Equilibrium

3. Example

4. Summary and Future Research
Model
Model Set-up: Supply

- Continuous set of technologies with marginal cost $c \in (0, \bar{c}]$ with \bar{c} the VOLL.
- Technology frontier: convex capital cost function $k(c)$

- Infinitely many small firms can invest in technology c
- Total expected profit: $\pi(c) = T(b(c)) - k(c) - c \cdot H(b(c))$:
 - expected transfers: $T(b(c))$,
 - expected capacity factor: $H(b(c))$.
Model Set-up: Demand

- Consumers are price takers.
- Stochastic and elastic inverse demand function: \(p = P(q) + \varepsilon \).
 Normalized such that \(\varepsilon \) is the intercept of the demand function \((P(0) = 0) \).
- Demand shock \(\varepsilon \) distributed with CDF \(F(\varepsilon) \) over \([\underline{\varepsilon}, \bar{\varepsilon}]\).
 Quantile function \(Q(\cdot) = F^{-1}(\cdot) \).
Model Set-up: Market Clearing

- **Bidding and investment strategies** \{\(b(c), G(c)\)}:
 - \(b(c)\) bids by firm with marginal cost \(c\). Assume \(b'(c) > 0\).
 - \(G(c)\) total installed capacity with marginal costs equal or less than \(c\).
- **Market clearing** then determines clearing price \(p^{\varepsilon}\), quantity \(Q^{\varepsilon}\), and marginal power plant \(c^{\varepsilon}\) for any given demand shock \(\varepsilon\).
Model Set-up: Market Clearing

- We will index the different states of the world not by the demand shock ε but by the marginal power plant c (firm’s type).
- The **market clearing condition** when firm of type c is marginal is

$$p(c) = b(c) = P(G(c)) + \varepsilon(c),$$

This determines $\varepsilon(c)$, the demand shock for which firm of type c is marginal.
- The **capacity factor** $h(c)$ of a firm of type c is then given by

$$h(c) = 1 - F(\varepsilon(c)).$$

- The **expected revenue** $T(c)$ of a firm of type c under uniform price and pay-as-bid auctions:

$$T^{up}(c) = \int_{c}^{\bar{c}} b(t) dh(t), \quad T^{pab}(c) = b(c) h(c).$$
What constitutes a competitive bidding and investment equilibrium \(\{b(c), G(c)\} \)?

Assumptions:
- Producers invest and bid before the demand shock is realized (long-lasting bids).
- Producers are price-takers: they take the stochastic distribution of prices as given.
- No entry barriers.

Competitive Market Equilibrium:
- **Short-run:** firm sets \(b(c) \) to maximize profit for a given stochastic price distribution with CDF \(Z(p) \). This price distribution is consistent with market clearing:

\[
Z(p(c)) = F(\varepsilon(c)).
\]

- **Long-run:** firm makes zero expected profit \(\pi(c) = 0 \).
Analysis
I. Bidding Equilibrium

- The optimal bidding strategies follow the FOC (Federico & Rahman, 2003):

\[b_{UP}(c) = c, \quad b_{PAB}(c) = c + \frac{1 - Z(b_{PAB}(c))}{Z'(b_{PAB}(c))}. \]

- PAB: trade-off between mark-up and being scheduled (similar to 1st price auction).
- However, the price distribution \(Z(p) \) is endogenous and depends on \(b(c) \).
- Hence, the optimal bid \(b(c) \) and the capacity factor \(h(c) \) are determined by a differential equation.
II. Investment Equilibrium

- Independent of auction format, from the envelope theorem the capacity factor $h(c)$ satisfies
 \[h(c) = -k'(c). \]

- Intuition: Screening curves - which technology is the cheapest depends on capacity factor h (Stoft, 2002; Boiteux, 1949).

\[h = \frac{-\Delta k}{\Delta c} = \frac{k^g - k^n}{c^g - c^n} \]
II. Investment Equilibrium (cont’d)

- Firm with technology c bids its marginal cost (in UPA) or levelized cost (in PABA)

$$b^{UP}(c) = c, \quad b^{PAB}(c) = c + \frac{k(c)}{h(c)}.$$

- The Lerner index PABA is the reciprocal of the elasticity $\epsilon_k(c)$ of investment costs:

$$L = \frac{b(c) - c}{c} = \frac{k(c)}{|k'(c)|c} := \frac{1}{\epsilon_k(c)}.$$

Not due to market power, but necessary to recoup investment costs.

- The cumulative installed capacity $G(c)$ can be calculated from market clearing condition.
Example
A Functional-Form Model: Assumptions

- Linear demand function
 \[P(q) = -\rho q \text{ with } \rho > 0. \]

- Convex investment cost
 \[k(c) = \frac{1}{\gamma + 1} \frac{(\bar{c} - c)^{\gamma+1}}{\bar{c} - \underline{c}} \text{ with } \gamma \in (0, 1). \]

- Uniformly distributed demand shocks over \([\varepsilon, \bar{\varepsilon}]\).
Producers’ optimal bidding strategy and investment decision

Figure 2: Comparison of bidding (solid) and portfolios (dashed) between UPA and PABA.
Comparison of PABA versus UPA

- Investments
 - Aggregate investments are identical in the two auctions as in Fabra et al. (2011), $\bar{G}^{UP} = \bar{G}^{PAB}$.
 - But the generation mix is distorted.
 - Fewer investments in the baseload capacity ($G^{PAB} < G^{UP}$).
 - More investments in all intermediate technologies ($G^{PAB}' > G^{UP}'$).

- All firms make zero profit (free entry), so welfare $= CS$.
 - The UPA is efficient (= Peak-load pricing, Boiteux (1949)), so $CS^{UP} > CS^{PAB}$.
 - CS with high demand is higher: as volume is the same & consumers pay less.
 - CS with low demand is lower: as volume is smaller & price is higher.
Summary and Future Research
Summary of Results

- Our research speaks to the question how auction formats affect short-term (bidding) and long-term (investment incentives) decisions.

- Inefficiency does not necessarily originate from market power. It could come from market design. Under PABA,
 - In the short run, consumers' WTP is higher than producers' marginal costs.
 - Allocative inefficiency
 - In the long run, revenue for baseload is distorted downwards, and incentives for investment decrease.
 - Distortion in generation mix
Future Research

- Allow for some bunching, i.e. $G'(c) = 0$ for some c? Some intermediate technologies are not used.

- Introduce market power in a monopoly setting.
Thank you :)