Consumer and value creation in the utility of the future: An experiment in the Italian solar PV market

Veronica Galassi and Reinhard Madlener

Institute for Future Energy Consumer Needs and Behavior (FCN) School of Business and Economics / E.ON Energy Research Center RWTH Aachen University

November 30-December 2, 2016 1st AIEE Energy Symposium Current and future challenges to energy security

Outline

1 Introduction

- 2 Theoretical background and research hypotheses
- 3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

・ロト ・聞ト ・ ヨト ・ ヨト

Incumbent electricity utility companies are loosing market shares

2

(日) (日) (日) (日) (日)

Incumbent electricity utility companies are loosing market shares

Shift in the traditional electricity supply paradigm due to a boom in the adoption of decentralized renewable energy sources (Sioshansi, 2014)

- Incumbent electricity utility companies are loosing market shares
- Shift in the traditional electricity supply paradigm due to a boom in the adoption of decentralized renewable energy sources (Sioshansi, 2014)
- Potential disruptive character of PV systems (and storage) linked to prosumption

- Incumbent electricity utility companies are loosing market shares
- Shift in the traditional electricity supply paradigm due to a boom in the adoption of decentralized renewable energy sources (Sioshansi, 2014)
- Potential disruptive character of PV systems (and storage) linked to prosumption
- Level of prosumption and integration of PV system in the value chain dependent on ownership and control of the system (Watson, 2004; Sauter and Watson, 2007):
 - "Plug-and-Play" model
 - "Community micro-grid" (Blansfield and Jones, 2014)
 - "Company control" scheme
 - "Rent-a-roof" (Frantzis et al., 2008)

First Energy Incentive Plan (Conto Energia) introduced in Italy in 2005

э

(日) (日) (日) (日) (日)

- First Energy Incentive Plan (Conto Energia) introduced in Italy in 2005
- Grid parity estimated to be achieved in 2010 (Breyer and Gerlach, 2013)

・ロト ・聞ト ・ ヨト ・ ヨト

- First Energy Incentive Plan (Conto Energia) introduced in Italy in 2005
- Grid parity estimated to be achieved in 2010 (Breyer and Gerlach, 2013)
- End of feed-in tariff scheme in July 2013

(日) (日) (日) (日) (日)

- First Energy Incentive Plan (Conto Energia) introduced in Italy in 2005
- Grid parity estimated to be achieved in 2010 (Breyer and Gerlach, 2013)
- End of feed-in tariff scheme in July 2013
- Small scale PV systems have achieved the installed capacity of 3,500 MW at the end of 2015; future diffusion of PV systems expected to stagnate (Palmer et al, 2015)

・ロト ・得ト ・ヨト ・ヨ

- First Energy Incentive Plan (Conto Energia) introduced in Italy in 2005
- Grid parity estimated to be achieved in 2010 (Breyer and Gerlach, 2013)
- End of feed-in tariff scheme in July 2013
- Small scale PV systems have achieved the installed capacity of 3,500 MW at the end of 2015; future diffusion of PV systems expected to stagnate (Palmer et al, 2015)
- Decentralized energy storage not yet diffused

・ロト ・得ト ・ヨト ・ヨ

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs

A B > A B >

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings

イロト イヨト イヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction

・ロト ・聞ト ・ ヨト ・ ヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs

・ロト ・聞ト ・ ヨト ・ ヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system

・ロト ・ 日 ト ・ ヨ ト ・

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period

・ロト ・聞ト ・ ヨト ・ ヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies

・ロト ・聞ト ・ ヨト ・ ヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel

イロト イヨト イヨト

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel
 - Contract length

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel
 - Contract length
 - Recommendation

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel
 - Contract length
 - Recommendation

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel
 - Contract length
 - Recommendation

₩

Would consumers still prosume if there were alternative options in the market?

- Amador et al. (2013): for different electricity suppliers
- Ida et al. (2014); Islam and Meade (2013); Scarpa and Willis (2010): motivations and preferences for PV systems:
 - Investment costs
 - Energy savings
 - CO₂ emission reduction
 - Maintenance costs
 - Style of the PV system
 - Payback period
 - Subsidies
 - % of families that already adopted the technology
 - Yearly inflation in fossil fuel
 - Contract length
 - Recommendation

₩

Would consumers still prosume if there were alternative options in the market? \implies HH preferences for innovative features of utility business models to be investigated through DCE

< 🗇 →

Outline

1 Introduction

2 Theoretical background and research hypotheses

3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

(日) (日) (日) (日) (日)

э

(日) (日) (日) (日) (日)

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

 \longrightarrow H₁: The "rent-a-roof" solution (utility ownership of the PV system) is preferred to "plug-and-play" (household ownership).

• • • • • • • • • • • • •

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

 \longrightarrow H1: The "rent-a-roof" solution (utility ownership of the PV system) is preferred to "plug-and-play" (household ownership).

 Complementarity: battery storage generates extra value if perceived to optimize self-consumption of electricity

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

 \longrightarrow H1: The "rent-a-roof" solution (utility ownership of the PV system) is preferred to "plug-and-play" (household ownership).

• **Complementarity**: battery storage generates extra value if perceived to optimize self-consumption of electricity

 $\longrightarrow H_2 {:}\ A$ solution with battery storage is always preferred to a PV system without storage unit.

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

 \longrightarrow H1: The "rent-a-roof" solution (utility ownership of the PV system) is preferred to "plug-and-play" (household ownership).

• **Complementarity**: battery storage generates extra value if perceived to optimize self-consumption of electricity

 $\longrightarrow H_2 {:}\ A$ solution with battery storage is always preferred to a PV system without storage unit.

Efficiency: A system bought through the "all-inclusive" formula or controlled by the energy utility reduces the search, information, and planning costs

(日) (同) (三) (三)

- Novelty: involves the generation of innovative services and transactions like
 - Renting the roof to the utility company (Drury et al. 2012)
 - Signing a lease contract for the purchase of a PV system (Rai and Sigrin, 2013),
 - Engaging in demand management activities

 \longrightarrow H1: The "rent-a-roof" solution (utility ownership of the PV system) is preferred to "plug-and-play" (household ownership).

• **Complementarity**: battery storage generates extra value if perceived to optimize self-consumption of electricity

 $\longrightarrow H_2 {:}\ A$ solution with battery storage is always preferred to a PV system without storage unit.

• Efficiency: A system bought through the "all-inclusive" formula or controlled by the energy utility reduces the search, information, and planning costs \longrightarrow H₃: Purchase and installation through a professional installer (the "all-inclusive" formula) is the preferred sales channel.

(日) (同) (三) (三)

 $\longrightarrow H_4 :$ External control and maintenance of the PV system are preferred to household control.

э

(日) (日) (日) (日) (日)

 $\longrightarrow H_4:$ External control and maintenance of the PV system are preferred to household control.

 Lock-in: by building trust, efficiency and novelty play a positive role in retaining satisfied customers, which results in contracts of longer lengths that minimize the uncertainty and risk of switching to another electricity provider (Defeuilley, 2009).

 $\longrightarrow H_4:$ External control and maintenance of the PV system are preferred to household control.

 Lock-in: by building trust, efficiency and novelty play a positive role in retaining satisfied customers, which results in contracts of longer lengths that minimize the uncertainty and risk of switching to another electricity provider (Defeuilley, 2009).

 $\longrightarrow H_5\colon$ Contracts of longer length for the supply of electricity from the grid are preferred to shorter ones.

 $\longrightarrow H_4:$ External control and maintenance of the PV system are preferred to household control.

 Lock-in: by building trust, efficiency and novelty play a positive role in retaining satisfied customers, which results in contracts of longer lengths that minimize the uncertainty and risk of switching to another electricity provider (Defeuilley, 2009).

 $\longrightarrow H_5\colon$ Contracts of longer length for the supply of electricity from the grid are preferred to shorter ones.

Kahneman and Tversky, 1979 and their prospect theory

(日) (同) (日) (日)

 $\longrightarrow H_4:$ External control and maintenance of the PV system are preferred to household control.

 Lock-in: by building trust, efficiency and novelty play a positive role in retaining satisfied customers, which results in contracts of longer lengths that minimize the uncertainty and risk of switching to another electricity provider (Defeuilley, 2009).

 $\longrightarrow H_5\colon$ Contracts of longer length for the supply of electricity from the grid are preferred to shorter ones.

Kahneman and Tversky, 1979 and their prospect theory

 $\longrightarrow H_6 :$ Respondents perceive benefits and costs of self-producing electricity differently.

(日) (同) (三) (三)

Outline

1 Introduction

2 Theoretical background and research hypotheses

3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

・ロト ・四ト ・日ト ・日

- Online survey among 835 owner-occupied households in Italy: 423 PV system owners and 412 PV system non-owners
- Filtering criteria lead to 403 PV owners and 409 PV non-owners (12,180 observations)
- Data gathered in October 2014 using the CAWI technique

	PV owners (%)	PV non-owners (%)
Gender		
Male	63.1	58.5
Female	36.9	41.5
Age group (Years)		
18-34	26.2	30.8
35-54	56.5	47.8
55-74	16.5	20.9
≥75	0.5	0.5
Net household income (€)		
<24,000	14.9	26.2
24,000-35,999	26.0	27.2
36,000-47,999	20.3	16.5
48,000-59,999	13.7	9.7
60,000-71,999	6.6	3.9
72,000-83,999	5.0	3.4
84,000-99,999	1.7	1.5
> 100,000	3.3	1.5
I prefer not to reply	8.5	10.2
Geographical location		
North	39.7	42.2
Center	22.0	17.2
South	23.2	25.7
Islands	15.1	14.8

・ロト ・聞ト ・ ヨト ・ ヨト

Outline

1 Introduction

2 Theoretical background and research hypotheses

3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

イロト イヨト イヨト

Value creation in the utility of the future Methodology Design of the DCE

- 3 unlabeled alternatives + "None" option
- 15 choice cards + 2 identical holdouts
- Fractional-factorial and full-profile design
- Computer-optimized Complete Enumeration design method
- Presence of *ad-hoc* prohibitions across attribute levels

• • • • • • • • • • •

Value creation in the utility of the future Methodology Design of the DCE

- 3 unlabeled alternatives + "None" option
- 15 choice cards + 2 identical holdouts
- Fractional-factorial and full-profile design
- Computer-optimized Complete Enumeration design method
- Presence of *ad-hoc* prohibitions across attribute levels

Attribute	Level
A1. Control and maintenance of the PV system (CONTROL)	1.1 Your control and maintenance
	1.2 Utility control and maintenance
A2. Total monthly benefits of the PV system (BENEFITS)	2.1 €60 per month for 20 years
	2.2 €80 per month for 20 years
	2.3 €100 per month for 20 years
A3. Monthly cost of the PV system (COSTS)	3.1 €0 (No ownership of the system)
	3.2 €50 per month for 10 years (Your ownership of the system)
	3.3 €70 per month for 10 years (Your ownership of the system)
A4. Duration of the supply contract with the utility	4.1 Not specified
(CONTRACT)	4.2 1 year
	4.3 5 years
	4.4 10 years
A5. Purchase and installation of a battery storage device	5.1 Yes, at no additional costs
(STORAGE)	5.2 Yes, at additional monthly costs of €60 for 20 years
	5.3 Yes, at additional monthly costs of €80 for 20 years
	5.4 No
A6. Channel of purchase and installation of the PV system	6.1 Purchase via installer, "all-inclusive" formula
(SALES)	6.2 Purchase on-line, installation arranged by the vendor
	6.3 Purchase in a shop, installation arranged by the vendor
	6.4 Purchase from a salesman, installation arranged by the vendor
	6.5 Purchase on-line/in shop/via salesman, installation organized locally by yourself

- Methodology

└─ Design of the DCE

Example of a choice card

	Alternative 1	Alternative 2	Alternative 3	Alternative 4
Channel of purchase and installation of the PV system	Purchase on-line/in shop/via salesman, installation organized locally by yourself	Purchase on-line, installation arranged by the vendor	Purchase on- line/in shop/via salesman, installation organized locally by yourself	
Purchase and installation of a battery device	Yes, at no additional costs	Yes, at additional monthly cost of €80 for 20 years	Yes, at additional monthly cost of €60 for 20 years	Tick this box if you would prefer not to
Total monthly benefits of the PV system	€100 per month for 20 years	€100 per month for 20 years for 20 years		install a PV system
Monthly cost of the PV system	€70 per month for 10 years (Your ownership of the system)	€70 per month for 10 years (Your ownership of the system)	€70 per month for 10 years (Your ownership of the system)	system
Duration of the supply contract with the utility	Not specified	Not specified	Not specified	
Control and maintenance of the PV system	Utility control and maintenance	Your control and maintenance	Utility control and maintenance	

< ロ > < 回 > < 回 > < 回 > < 回 >

- Methodology

Model and estimation technique

The Bayesian approach

- Widely employed in marketing studies
- Still rare applications in energy field (Train and Sonnier, 2005; Daziano, 2013)
- Estimation of a Hierarchical Bayes Multinomial Logit Model with Random Effects (Allenby and Lenk, 1994, 1995) within the Random Utility Theory Framework (McFadden, 1973)
- Individual parameters are random variables $\beta_i \sim MVN(\theta, \Lambda)$
- Hyperparameters θ and Λ are unknown: $\theta \sim N(q_n, Q_n); \Lambda \sim IW_p(d_0, D_0)$
- \blacksquare Bayes' Rule: $p(X|y) \propto p(y|X) \ast p(X)$
- Simultaneous estimation of all the parameters through MCMC simulation across 80,000 iterations

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト

Outline

1 Introduction

2 Theoretical background and research hypotheses

3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

Results

Posterior estimates

Mean estimates of θ (Models 1, 2, 3 and 4)

Levels	Model 1	Mo	del 2	Mod	el 3	Model 4		
Levels	woder 1	Intercept	PV	Intercept	Age	PV	Non-PV	
CONTROL_1	-0.172***	-0.240***	0.135**	-0.145*	-0.001	-0.097**	-0.322***	
	(0.039)	(0.017)	(0.059)	(0.053)	(0.001)	(0.024)	(0.102)	
CONTROL_2	0.172***	0.240***	-0.135**	0.145*	0.001	0.097**	0.322***	
	(0.039)	(0.017)	(0.059)	(0.053)	(0.001)	(0.024)	(0.102)	
BENEFITS_1	-0.024	0.068	-0.177**	-0.049	0.001	-0.096**	0.043	
	(0.041)	(0.037)	(0.074)	(0.090)	(0.003)	(0.031)	(0.056)	
BENEFITS_2	-0.031	-0.065	0.073	0.007	-0.001	-0.008	-0.089*	
	(0.035)	(0.036)	(0.078)	(0.011)	(0.001)	(0.015)	(0.011)	
BENEFITS_3	0.054	-0.003	0.105	0.042	0.000	0.103**	0.046	
	(0.045)	(0.001)	(0.003)	(0.079)	(0.001)	(0.015)	(0.046)	
COSTS_1	0.550***	0.833***	-0.546***	0.466**	0.002	0.305***	0.986***	
	(0.068)	(0.088)	(0.056)	(0.109)	(0.003)	(0.057)	(0.069)	
COSTS_2	-0.173***	-0.289***	0.215***	-0.095	-0.002	-0.066	-0.376***	
	(0.044)	(0.009)	(0.035)	(0.037)	(0.001)	(0.057)	(0.072)	
COSTS_3	-0.376***	-0.545***	0.331***	-0.371***	0.000	-0.239***	-0.610***	
	(0.046)	(0.079)	(0.090)	(0.072)	(0.002)	(0.000)	(0.002)	
CONTRACT_1	-0.080**	-0.038	-0.072	0.083	-0.004	-0.116**	-0.057	
	(0.042)	(0.045)	(0.023)	(0.138)	(0.003)	(0.021)	(0.089)	
CONTRACT_2	-0.121***	-0.121**	-0.003	-0.011	-0.003	-0.129**	-0.146**	
	(0.043)	(0.044)	(0.016)	(0.061)	(0.003)	(0.055)	(0.024)	
CONTRACT_3	0.100***	0.122**	-0.048	0.171	-0.002	0.071	0.160**	
	(0.041)	(0.070)	(0.058)	(0.137)	(0.003)	(0.009)	(0.063)	
CONTRACT_4	0.101**	0.036	0.123*	-0.243*	0.008**	0.175***	0.043	
	(0.046)	(0.068)	(0.020)	(0.061)	(0.003)	(0.043)	(0.049)	

⇒ Utility control is preferred

⇒ "Rent-a-roof" is preferred to "Plug-and-Play"

⇒Contracts of longer lengths are preferred

・ロト ・ 日 ト ・ ヨ ト ・

Results

Posterior estimates

Mean estimates of θ (Models 1, 2, 3 and 4), cont.

Levels	Model 1	Moo	del 2	Mo	del 3	Model 4		
Levels	wodel 1	Intercept	PV	Intercept	Age	PV	Non-PV	
STORAGE_1	0.726***	0.908***	-0.366***	-0.120	0.020***	0.559***	1.059***	
	(0.060)	(0.023)	(0.063)	(0.050)	(0.002)	(0.0350)	(0.116)	
STORAGE_2	-0.337***	-0.382***	0.121	0.167	-0.012***	-0.276***	-0.456***	
	(0.057)	(0.013)	(0.017)	(0.167)	(0.004)	(0.003)	(0.040)	
STORAGE_3	-0.412***	-0.491***	0.154*	0.026	-0.010***	-0.345***	-0.594***	
	(0.059)	(0.052)	(0.142)	(0.103)	(0.001)	(0.063)	(0.066)	
STORAGE_4	0.024	-0.035	0.091	-0.074	0.002	0.063	-0.009	
	(0.054)	(0.041)	(0.096)	(0.014)	(0.001)	(0.025)	(0.090)	
SALES_1	0.051	0.103*	-0.110	0.018	0.001	0.016	0.072	
	(0.048)	(0.040)	(0.060)	(0.092)	(0.002)	(0.052)	(0.008)	
SALES.2	-0.000	-0.004	-0.003	0.029	.029 -0.001		0.025	
	(0.0490)	(0.078)	(0.010)	(0.005)	(0.001)	(0.004)	(0.017)	
SALES_3	0.048	0.091*	-0.061	-0.002	0.002	0.022	0.111*	
	(0.043)	(0.014)	(0.022)	(0.075)	(0.001)	(0.042)	(0.072)	
SALES_4	0.052*	0.040	0.021	-0.190*	0.006**	0.045	0.098	
	(0.040)	(0.037)	(0.042)	(0.112)	(0.001)	(0.060)	(0.127)	
SALES_5	-0.151***	-0.230***	0.153**	0.145	-0.007**	-0.067	-0.306***	
	(0.049)	(0.013)	(0.114)	(0.060)	(0.002)	(0.053)	(0.047)	
None	-3.501***	-2.171***	-2.895***	-5.160***	0.036**	-4.271***	-2.184***	
	(0.304)	(0.113)	(0.202)	(0.070)	(0.002)	(0.363)	(0.312)	
McFadden's Pseudo R ²	0.5461	0.5	474	0.5	467	0.5003	0.6269	
	Level of c	redibility: **	** = 99% ; *	** = 95%; *	= 90%.			
		Standar	d errors in b	rackets				

⇒No ownership of battery is preferred

⇒ Installation arranged by vendor is preferred

(4日) (四) (2) (2) (2)

- Results

Posterior estimates

Mean estimate of the variance-covariance matrix Λ and correlation coefficients (Model 1)

- Evidence of unexplained heterogeneity
- No evidence of correlation in parameters across choice tasks

	A1.1	A1.2	A2.1	A2.2	A2.3	A3.1	A3.2	A3.3	A4.1	A4.2	A4.3	A4.4	A5.1	A5.2	A5.3	A5.4	A6.1	A6.2	A6.3	A6.4	A6.5	None
A1.1	.323	323	.074	000	074	.047	048	.002	046	.001	.015	.031	042	.023	.076	057	009	011	.005	.006	.008	565
A1.2		.323	074	.000	.074	047	.048	002	.046	000	015	031	.042	023	076	.057	.009	.011	005	006	008	.565
A2.1			.628	139	489	.063	039	024	.061	.042	.004	.024	086	.068	.025	006	035	.022	.014	013	.012	283
A2.2				.333	193	.057	.041	.016	.044	009	025	011	.014	.019	010	023	.019	.013	.022	.011	.027	.344
A2.3					.682	005	002	.008	.017	.034	.029	013	.073	086	016	.029	.016	008	.008	.024	040	061
A3.1	.060	060	.521	.047	.004	1.924	896	-1.028	.019	009	.013	024	.327	159	192	.024	.002	019	.024	045	.038	1.558
A3.2	104	.104	609	.188	.004		.654	.242	003	006	016	.025	116	.076	.056	016	034	003	.010	.025	.002	647
A3.3	.004	004	487	.061	.015			.785	017	.015	.003	002	211	.083	.136		.033	.022	034	.020	040	912
A4.1									.587				.054	035	086	.067	.038	.011	.039	.029	.041	1.082
A4.2										.554	164		022	.014	011	.019	031		026	.008	.054	.134
A4.3											.478		.047	.002	.003	053	.003	.019	.019	010	031	491
A4.4												.758	079	.019	.094				.045	.031	064	725
A5.1		.064	095	.021	.077	.206	125	208					1.313			218	.061	.017	.030	067	041	1.707
A5.2	.056	056	.118		144	158	.130	.129						.526		207			009	.004	.017	651
A5.3		160	.038		023	165	.083	.183							.702		015		.007	.021	003	-1.375
	124	.124	009	049	.044	.021	025	011								.649		019		.042	.027	.318
A6.1																	.560	138			.216	.150
A6.2																		.472	136			196
A6.3																			.465			224
A6.4																				.435	.126	.044
A6.5																					.541	.225
None	184	.184	066	.111	014	.208	148	191	.262	.033	132	154	.276	166	304	.073	.037	053	061	.012	.057	29.068

Posterior estimates

Normalized and zero-centered β_i : Models 1, 4, 2, and 3

		Model 1		Mo	del 4			Model 2			Model 3	
Levels	All resp.	PV	Non-PV	PV	Non-PV	Levels	All resp.	PV	Non-PV	All resp.	PV	Non-PV
Levels	N=812	N=403	N=409	N=403	N=409	Levels	N=812	N=403	N=409	N=812	N=403	N=409
CONTROL_1	-13.75	-10.05	-17.40	-7.35	-19.49	CONTROL_1	-13.72	-8.68	-18.69	-13.91	-10.16	-17.61
CONTROL_2	13.75	10.05	17.40	7.35	19.49	CONTROL_2	13.72	8.68	18.69	13.91	10.16	17.61
BENEFITS_1	-1.08	-4.60	2.39	-7.41	4.07	BENEFITS_1	-0.86	-8.83	7.00	-0.83	-4.23	2.52
BENEFITS_2	-2.07	-1.00	-3.13	-0.12	-5.56	BENEFITS_2	-1.98	1.01	-4.93	-2.35	-1.26	-3.43
BENEFITS_3	3.15	5.60	0.73	7.53	1.49	BENEFITS_3	2.84	7.82	-2.07	3.18	5.49	0.90
COSTS_1	40.67	24.00	57.10	22.21	55.56	COSTS_1	40.98	21.46	60.22	40.46	24.05	56.63
COSTS_2	-12.32	-5.52	-19.03	-4.50	-21.02	COSTS_2	-12.80	-5.23	-20.25	-12.94	-5.94	-19.85
COSTS_3	-28.35	-18.48	-38.08	-17.72	-34.54	COSTS_3	-28.19	-16.23	-39.97	-27.51	-18.11	-36.78
CONTRACT_1	-6.68	-10.19	-3.22	-9.51	-3.26	CONTRACT_1	-6.17	-9.67	-2.72	-6.13	-9.49	-2.82
CONTRACT_2	-10.04	-11.09	-9.01	-10.49	-8.86	CONTRACT_2	-9.94	-10.80	-9.09	-10.69	-11.56	-9.83
CONTRACT_3	8.34	8.72	7.97	5.69	10.40	CONTRACT_3	8.06	6.54	9.55	8.30	8.51	8.09
CONTRACT_4	8.38	12.56	4.26	14.31	1.71	CONTRACT_4	8.05	13.93	2.26	8.52	12.54	4.57
STORAGE_1	58.52	47.10	69.78	45.16	62.17	STORAGE_1	57.55	45.74	69.18	57.77	46.41	68.97
STORAGE_2	-27.69	-23.38	-31.52	-22.97	-26.65	STORAGE_2	-25.89	-22.72	-29.02	-26.23	-22.61	-29.80
STORAGE_3	-33.27	-26.26	-40.18	-27.97	-34.77	STORAGE_3	-33.09	-28.81	-37.31	-33.65	-26.46	-40.74
STORAGE_4	2.43	2.96	1.91	5.78	-0.74	STORAGE_4	1.43	5.79	-2.86	2.12	2.66	1.58
SALES_1	4.17	1.93	6.39	0.65	5.08	SALES_1	3.87	-1.22	8.88	3.29	1.19	5.36
SALES_2	0.11	0.83	-0.59	-0.79	1.50	SALES_2	-0.42	-0.15	-0.69	-0.59	0.17	-1.34
SALES_3	3.59	3.07	4.10	1.68	6.13	SALES_3	4.61	2.26	6.93	5.24	4.30	6.18
SALES_4	5.12	6.06	4.19	4.37	6.54	SALES_4	5.00	6.20	3.83	4.91	5.89	3.95
SALES_5	-12.99	-11.88	-14.08	-5.91	-19.24	SALES_5	-13.06	-7.09	-18.95	-12.86	-11.54	-14.15
None	-328.00	-448.68	-209.08	-382.35	-139.76	None	-337.79	-495.36	-182.53	-335.08	-456.65	-215.30

 \Rightarrow PV non-owners seem to be relatively more risk-averse than PV-system owners

Results

Attribute importance and ranking

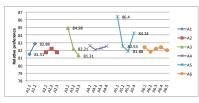
Self-reported vs. estimated attribute importance (%) and ranking

			Percentiles	5
	Mean rank	25 th	50 th	75 th
CONTROL	3.50	2.00	3.00	5.00
BENEFITS	2.75	1.00	2.00	4.00
COSTS	2.52	1.00	2.00	4.00
CONTRACT	4.02	3.00	4.00	5.00
STORAGE	3.82	3.00	4.00	5.00
SALES	4.40	3.00	5.00	6.00
N=812		$\chi^2(5) = 624.292$		p=0.00

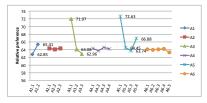
Table: Attribute ranking and Friedman test statistics

Table: Model 3 - Estimated average attribute importance (%) and ranking

Ranking	Attribute	All respondents (N=812)	PV owners (N=403)	PV non-owners (N=409)
1	STORAGE	23.74	22.27	25.19
2	COSTS	22.59	20.32	24.83
3	CONTRACT	16.64	18.07	15.22
4	BENEFITS	14.25	15.33	13.19
5	SALES	14.03	15.94	12.16
6	CONTROL	08.75	08.08	09.41
	Total	100.00	100.00	100.00


Veronica Galassi and Reinhard Madlener (FCN)

・ロト ・聞ト ・ ヨト ・ ヨト


Results

Sensitivity analysis

Computation of the variation in shares of preferences for a generic business model

(b) PV non-owners

- A1: Level 1.5
- A2: Level 2
- A3: Level 2
- A4: Level 2.5
- A5: Level 2.5
- A6: Level 3

Outline

1 Introduction

2 Theoretical background and research hypotheses

3 Sample

4 Methodology

- Design of the DCE
- Model and estimation technique

5 Results

- Posterior estimates
- Attribute importance and ranking
- Sensitivity analysis

6 Conclusions

Results suggest that:

- Greater attention placed on costs rather than benefits $(H_6: \checkmark)$
- The "rent-a-roof" solution is preferred to "plug-and-play" $(H_1: \checkmark)$
- External control and maintenance is preferred to internal one $(H_4:\checkmark)$
- No preferences for ownership of the storage technology itself (H₂:×)
- Overall no strong preferences for "all-inclusive" solution (H₃:?)
- Evidence for contracts of longer duration being preferred $(H_5: \checkmark)$
- The effect of integration of decentralized renewable energy sources can be less disruptive as initially thought

イロト イロト イヨト イヨト

Thanks for your attention!

Contact details:

vgalassi@eonerc.rwth-aachen.de RMadlener@eonerc.rwth-aachen.de

Content taken from **FCN Working Paper 19/2014**, revised October 2016 (available on FCN website, SSRN, and RePEc)

A B > A B >

References

Allenby, G.M. and P.J. Lenk, Modeling household purchase behavior with logistic normal regression. Journal of the American Statistics Association, 1994, 89(428), 1218-1231.

Allenby, G.M. and P.J. Lenk, Reassessing brand loyalty, price sensitivity, and merchandising effects on consumer brand choice. Journal of Business and Economics Statistics, 1995, 13(3), 281-290.

Amador, F.J., Gonzlez, R.M., and Ramos-Real, F.J. Supplier choice and WTP for electricity attributes in an emerging market: The role of perceived past experience, environmental concern and energy saving behavior. Energy Economics, 2013, 40, 953-966.

Amit, R., and Zott, C.Value creation in e-business. Strategic management journal, 2001, 22(6-7), 493-520.

Blansfield, J., and Jones, K. Industry response to revenue Erosion from Solar PVs. Distributed Generation and its Implications for the Utility Industry, 2014 Breyer, C. and A. Gerlach, Global overview on grid-parity. Progress in Photovoltaics: Research and Applications, 2013, 21(1), 121-136.

Daziano, R.A., Conditional-logit Bayes estimators for consumer valuation of electric vehicle driving range. Resource and Energy Economics, 2013, 35(3), 429-450.

Defeuilley, C. Retail competition in electricity markets. Energy Policy, 2009, 37(2), 377-386.

Drury, E., Miller, M., Macal, C. M., Graziano, D. J., Heimiller, D., Ozik, J., and Perry IV, T. D. The transformation of southern California's residential photovoltaics market through third-party ownership. *Energy Policy*, 2012, 42, 681-690.

Frantzis, L., Graham, S., Katofsky, R., and Sawyer, H. Photovoltaics business models. National Renewable Energy Laboratory, 2008, Burlington. Ida, T., K. Murakami, and M. Tanaka, A stated preference analysis of smart meters, photovoltaic generation, and electric vehicles in Japan: Implications for penetration and GHG reduction. *Energy Research & Social Science*, 2014, 2(0), 75-89.

Islam, T. and N. Meade, The impact of attribute preferences on adoption timing: The case of photo-voltaic (PV) solar cells for household electricity generation. *Energy Policy*, 2013, 55(0), 521-530.

Kahneman, D., and Tversky, A. Prospect theory: An analysis of decision under risk. Econometrica: Journal of the econometric society, 1979, 263-291. McFadden D., Conditional logit analysis of qualitative choice behavior, *Frontiers in Econometrics*, Academics Press, 1973.

Palmer, J., G. Sorda, and R. Madlener. Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation. Technological Forecasting and Social Change 99, 2015, 106-131.

Rai, V., and Sigrin, B. Diffusion of environmentally-friendly energy technologies: buy versus lease differences in residential PV markets. *Environmental Research Letters*, 2013, 8(1), 014022. Sauter, R., and Watson, J., Strategies for the deployment of micro-generation: Implications for social acceptance. Energy Policy. 2007, 35(5), 2770-2779.

Scarpa, R., and Willis, K. Willingness-to-pay for renewable energy: Primary and discretionary choice of British households' for micro-generation technologies. *Energy Economics*, 2010, 32(1), 129-136. Sioshansi, F. P. Decentralized energy: Is it as imminent or serious as claimed. *Distributed Generation and its Implications for the Utility Industry*, 2014, 3-32.

Watson, J., Co-provision in sustainable energy systems: the case of micro-generation. Energy Policy, 2004, 32(17), 1981-1990.

Train, K. and G. Sonnier, Mixed logit with bounded distributions of correlated partworths. Applications of simulation methods in environmental and resource economics, Springer, 2005.

(日) (同) (日) (日)

Backup slides

2

< ロ > < 回 > < 回 > < 回 > < 回 >

The framework

Given *n* respondents, the individual-level utility for subject *i* of an alternative *k* across *j* choice tasks is $Y_{ijk} = \overline{Y}(x_{ijk}, b) + \varepsilon_{ijk}$, which under the assumption of a linear relationship between the attributes and utility becomes $Y_{ijk} = \beta_0 + x'_{ijk}\beta_i + \varepsilon_{ijk}$

In each choice task j the alternative k picked by respondent i is assumed to maximize her utility $(Y_{ijv} \ge Y_{ijk})$, where v is the maximal latent utility achievable ¹

¹Hess, S. and A. Daly, Handbook of Choice Modeling, Edward Elgar, 2014.

The model in details

• Choice probabilities can be written as: $P_{ij}(y = k | \beta_0, \beta_i) = \frac{exp(\beta_0 + x'_{ijk}\beta_i)}{\sum\limits_{v=1}^{K} exp(\beta_0 + x'_{ijk}\beta_i)}$

• The joint probability distribution of all data and unknown quantities is: $\begin{bmatrix} \prod_{i=1}^{n} \prod_{j=1}^{m_{i}} \prod_{k=1}^{K} P_{ij}(k \mid \beta_{0}, \beta_{i})^{\chi(U_{ij}=k)} \end{bmatrix} \begin{bmatrix} \prod_{i=1}^{n} h(\beta_{i} \mid \theta, \Lambda) \end{bmatrix} g(\beta_{0})g(\theta)g(\Lambda)$

• The marginal distribution of individual parameters can therefore be written as: $L(\beta_i) = \sum_{j=1}^{m_i} \sum_{k=1}^{K} \chi(U_{ij} = k) ln \left[P_{ij}(k \mid \beta_0, \beta_i) \right] + ln \left[h(\beta_i \mid \theta, \Lambda) \right]$

イロン イヨン イヨン イヨン

Heterogeneity distribution of β_i (Models 3, 4 and 16)

100 S.S.

Figure: A1.1–Model 3

Figure: A2.3–Model 3

Figure: A3.1-Model 3

Figure: A1.1-Model 4

Figure: A1.1-Model 16

Figure: A2.3-Model 4

Figure: A3.1-Model 4

Figure: A2.3-Model 16

Figure: A3.1-Model 16

Heterogeneity distribution of β_i (cont'd)

Figure: A4.2-Model 3

Figure: A5.1–Model 3

Figure: A6.1-Model 3

Figure: A4.2-Model 4

Figure: A4.2-Model 16

Figure: A5.1–Model 4

Figure: A6.1-Model 4

Figure: A5.1-Model 16

Figure: A6.1-Model 16