Energy Storage and Renewable Energy Deployment: Empirical Evidence from the OECD countries

Dina Azhgaliyeva, Asian Development Bank Institute, Japan
Zhong Sheng, Energy Studies Institute, National University of Singapore

17 December 2020
5th AIEE Energy Symposium Current and Future Challenges to Energy Security

The views expressed in this presentation are the views of the authors and do not necessarily reflect the views or policies of the Asian Development Bank Institute (ADBI), the Asian Development Bank (ADB), its Board of Directors, or the governments they represent. ADBI does not guarantee the accuracy of the data included in this paper and accepts no responsibility for any consequences of their use. Terminology used may not necessarily be consistent with ADB official terms.
Motivation

• The main disadvantage of high penetration of renewable energy is the intermittency caused by renewable energy sources which makes balancing of an energy system challenging (negative externality of renewable energy).

• Most energy storage technologies are immature and require investments in R&D in order to improve performance, safety and reduce cost.
Wind farms paid £1m a week to switch off

New figures show £53m was given to the wind industry last year to keep turbines switched off to regulate electricity supplied to National Grid.

GERMANY PAID WIND TURBINES $548 MILLION TO SIT IDLE

Why windfarms get paid to switch off

A headline in the Times today claims windfarms get “paid £10,000 a day to sit idle”, leading consumer group
Investments in Energy Storage R&D

Source: Frankfurt School-UNEP Centre/BNEF (2020)
Research question

• “Which policies incentivize investments in energy storage?”
Data

• Using annual panel data from 29 OECD countries over the period 1985-2016 this paper provides an empirical evidence on the role of policies on investments in energy storage.
Dependent variable: Energy storage R&D

Investments in R&D of energy storage technologies (in nominal national currency):

- hydrogen and fuel cells
- other power and storage technologies
- other cross-cutting technologies and research
Independent variables: Policies

- Energy Storage Policy instruments: fiscal (taxes & grants), financial (loans), public investment (RD&D), grants, etc. (binary)

- Environmental tax (share of GDP)

- Energy tax (share of GDP)
Control variables

• *Environmental patents*
 The patent is counted if it was filed in at least one of the five largest patent authorities in the world, i.e., China, the US, the European Patent office, Japan, and South Korea. (count)

• *Energy intensity*
 of primary energy (amount of primary energy (in TJ) per unit of GDP (in 2011 PPP US dollars)).

• *Fossil fuel consumption* (share in total energy consumption.)
<table>
<thead>
<tr>
<th>Variable</th>
<th>Obs.</th>
<th>Mean</th>
<th>Std. Dev.</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log(energy storage R&D share)</td>
<td>846</td>
<td>-11.05</td>
<td>1.55</td>
<td>-16.69</td>
<td>-6.61</td>
</tr>
<tr>
<td>Log(energy intensity)</td>
<td>559</td>
<td>1.57</td>
<td>0.322</td>
<td>0.66</td>
<td>2.35</td>
</tr>
<tr>
<td>Log(share of fossil fuels)</td>
<td>801</td>
<td>4.31</td>
<td>0.27</td>
<td>2.56</td>
<td>4.60</td>
</tr>
<tr>
<td>Energy storage policy</td>
<td>846</td>
<td>0.22</td>
<td>0.41</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Log(energy tax share)</td>
<td>513</td>
<td>0.43</td>
<td>0.39</td>
<td>-0.82</td>
<td>1.17</td>
</tr>
<tr>
<td>Log(environmental tax share)</td>
<td>512</td>
<td>0.81</td>
<td>0.39</td>
<td>-1.99</td>
<td>1.68</td>
</tr>
<tr>
<td>Log(environmental patent share)</td>
<td>659</td>
<td>-2.508</td>
<td>0.40</td>
<td>-4.25</td>
<td>-0.89</td>
</tr>
<tr>
<td>Log(R&D expenditure share)</td>
<td>678</td>
<td>-17.96</td>
<td>0.55</td>
<td>-20.45</td>
<td>-16.96</td>
</tr>
</tbody>
</table>
\[
\ln RD_{i,t} = a_0 + a_1 \ln EI_{i,t} + a_2 \ln EP_{i,t} + a_3 \ln EPAT_{i,t} + a_4 \ln RD_EXP_{i,t-1} \\
+ a_5 \ln FS_{i,t} + a_6 \ln ERS_{i,t} + u_i + \varepsilon_{i,t}
\]

- \(RD_{i,t}\) - energy storage R&D (share of budget in GDP)
- \(EI_{i,t}\) - energy intensity (primary energy (in TJ) per unit of GDP (in 2011 PPP USD))
- \(EP_{i,t}\) - energy storage policy (binary)
- \(EPAT_{i,t}\) - patents in environmental or low carbon technologies
- \(FS_{i,t}\) - fossil fuels consumption (share in total energy use).
- \(ERS_{i,t}\) - environmental tax and energy tax (share in GDP).
- \(u_i\) - captures the fixed-effect that corresponds to country \(i\). Note that \(u_i\) captures the time-invariant and economy-specific effects.
- \(\varepsilon_{i,t}\) is the error term.
<table>
<thead>
<tr>
<th></th>
<th>Model 1</th>
<th>Model 2</th>
<th>Model 3</th>
<th>Model 4</th>
<th>Model 5</th>
<th>Model 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy intensity, log</td>
<td>-1.99***</td>
<td></td>
<td></td>
<td>-2.14***</td>
<td></td>
<td>-2.08**</td>
</tr>
<tr>
<td>Energy storage policy, binary</td>
<td>0.50*</td>
<td>0.74***</td>
<td>0.63**</td>
<td>0.35</td>
<td>0.65**</td>
<td>0.38*</td>
</tr>
<tr>
<td>Environmental patent share, log</td>
<td>0.37*</td>
<td>0.47**</td>
<td>0.14</td>
<td>0.09</td>
<td>0.17</td>
<td>0.11</td>
</tr>
<tr>
<td>R&D expenditure share, lag of log</td>
<td>1.04**</td>
<td>0.35</td>
<td>1.36***</td>
<td>1.30**</td>
<td>1.35**</td>
<td>1.27**</td>
</tr>
<tr>
<td>Fossil fuel share, log</td>
<td></td>
<td>-2.89**</td>
<td>-2.87**</td>
<td></td>
<td>-2.54*</td>
<td></td>
</tr>
<tr>
<td>Energy tax share, lag of log</td>
<td></td>
<td></td>
<td>-1.93***</td>
<td>-1.81***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Environmental tax share, lag of log</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.92**</td>
<td>-1.84***</td>
</tr>
<tr>
<td>Constant</td>
<td>11.63</td>
<td>8.836</td>
<td>26.84***</td>
<td>16.76*</td>
<td>26.11**</td>
<td>16.78*</td>
</tr>
<tr>
<td>Obs.</td>
<td>432</td>
<td>490</td>
<td>372</td>
<td>372</td>
<td>373</td>
<td>373</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.34</td>
<td>0.23</td>
<td>0.38</td>
<td>0.39</td>
<td>0.37</td>
<td>0.38</td>
</tr>
</tbody>
</table>
Results I: Policy

- Energy storage policies are effective in promoting investments.

- Implementation of energy storage policies increases investments in R&D of energy storage by 0.5-0.6 percent.

- The results failed to provide the effectiveness of energy tax and environmental tax on investments in R&D of energy storage.
Results II: Innovation in low carbon technologies

• Innovation capability in low carbon technologies increases investments in energy storage.

• A one percent increase in environmental patent share in total patents is associated with an increase in investments in R&D in energy storage by 0.4-0.5 percent.
Results III: Fossil fuels

- Fossil fuels have a negative effect on energy storage R&D budget. This means that countries with greater share of renewable/clean energy in their energy use structures invest more in R&D in energy storage. Renewable energy in the energy structure use increases then need to invest in energy storage grows.
Policy recommendations for promoting investment in energy storage

• The major determinant of investments in R&D of energy storage is the share of fossil fuel in energy use structure. Countries with low, but growing, share of renewable energy need to provide more incentives to promote investments in energy storage.

• Innovations in low carbon technologies promote investments in energy storage.

• Energy storage policies are effective in promoting investments in energy storage; however the impact is small.

• We could not provide an evidence on the effectiveness of energy tax and environmental tax in promoting investments in energy storage.